Essomampimo (Geometry)

Bisangiddwa ku Wikipedia
Jump to navigation Jump to search
Gtk-find-and-replace.svg
IALI NGO has been authorised by terminologist Muwanga Charles
to post this article from his Luganda Scientific works on Luganda Wikipedia for free Public Consumption.
Gtk-find-and-replace.svg
"Ebyempimo" = "Essomampimo" = "essomankula" (Geometry)

"Empimo" oba "empima" kivvuunula "dimension". "enkula" kivvuunula "shape" ."Enkula ey'ekibalangulo" kivvuunula "mathematical shape".


Kati weetegereze bino:


(i) Ebyempimo (Geometry) kiva mu bigambo "ebyenjigiriza ebikwata ku mpimo/mpima" (teaching about dimensions)

(ii) Essomampimo(Geometry) kiva mu bigambo "essomo ly'empimo"(the study of dimensions)

(iii)Essomankula(Geometry)kiva mu bigambo "essomo ly'enkula(the study of shapes)


Okilaba nti oluganda Olw'omulembe omutebi lukozesa emiramwa esatu, Ebyempimo,Essomampimo, n'Essomankula okutegeeza ekintu kye kimu , essomo lya "Geometry". Mu byempimo mulimu enkula ez'ekibalangulo oba enkula ez'ekibalo(mathematical shapes) ez'enjawulo nga:


(a) Akatonnyeze(Point)

(b) Olukoloboze oba omusittale(line)

(c) Omugendo(Ray) ate ekigendo(Vector). Ekigendo kiva mu bigambo "ekibalo ky'omugendo"(the mathematics of rays)

(d) Ekikoloboze=ekitundu ky'olukoloboze oba ekisittale = ekitundu ky'omusittale(line segment)

(e) Eppeto(angle).Mu bungi , eppeto kiba "amaweto" oba "empeto"(angles).

(f) Enkula ennetoloovu=Entoloovu(Circle)

(g) Enkula ennekulungirivu =Enkulungo(Sphere, Planet).

(h) Ekikulungo=ekimu kya kubiri eky'enkulungo(hemisphere)

(i) Eripuso(Ellipse).Eno eba nkula eya woovu(oval shape)

(j) Ekiripuso=ekimu kya kubiri ekya eripuso(semi-ellipse)

(k) Enkunu oba enkinu=Enkula ey'ekinu(Cylinder)

(l) Ensoggo=Enkula ey'olusoggo(Cone)

(m) Ekigulumiro(Prism); Ekigulumiro eky'ekilawuli(Glass prism)

(n) Ekitendero(plane ; enkula ey'ekitendero(Plane figure). Eno buli katonnyeze kaba ku mutendera gwe gumu. Eba nkula ya museetwe

(o) Obwebulungirivu(perimeter)

(p)Obwetoloovu(Circumference)

(q) Obubangirivu(Volume)

(r) Ekibangirizo(space)

(s) Obwagaagavu(Area)


Mpuyinnyingi(Polygons)


(i) Mpuyisatu(trigony).Eno era eyitibwa Mpetosatu(traingle)

(ii) Mpuyinnya(quadrilateral ).Eno era eyitibwa "mpetonnya"(Quadrangle)

(iii)Mpuyittaano(Pentagon)

(iv)Mpuyimukaaga(Hexagon)

(v)Mpuyimusanvu(Heptagon)

(vi)Mpuyimunaana(Octagon)

(vii)Mpuyimwenda(Nonagon)

(viii)Mpuyikkumi(Decagon)


Mpuyinnya(Quadrilateral)


(a) Kyesimba(Rectangle)

(b) Kyebiriga(Square)

(c) Kyesatuza (Cube)

(d) Kyegendaganya(Parallelogram)

(e) Emisittale oba Enkoloboze ezigendagana(Parallel lines)


Essomampuyisatu(Trigonometry)


(i) Mpuyisatu Ennesimbu(Right triangle)

(ii)Mpuyisatu Eyamalongo(Isosceles triangle)

(iii) Mpuyisatu Eyamatenkane(Scalene triangle)


Eggereeso lya Payisoggolaasi(Pythagoras theorem)


(a) Olwesimbu(height)

(b)Olugalamivu(Base)

(c) Oluwunziko(Hypotenuse)

(d) Olwesimbu olwa kyebiriga(Height (a)Squared )

(e) Olugalamivu olwa kyebiriga (Base (b) squared)

(f)Oluwunziko olwa kyebiriga (Hypotenuse (c) squared)

(g) Okugereesa (to theorize)

(h) Ekigereeso (Scientific theory)

(i) Omugereeso(Mathematical theory)


Eggereeso(Theorem)


Eggereeso lya Payisoggolaasi ligamba nti :

Olwesimbu olwa kyebiriga + Olugalamiro olwa kyebiriga = Oluwunziko olwa kyebiriga.


Essomampimo ery'entoloovu(The Geometry of Circles)


Olusekkati(D)=Olukoloboze olusala mu nkula ennetoloovu kimu kya kubiri(Diameter)


Olunakkati(R) =Olukoloboze olusala mu nkula ennetoloovu ebitundu bina era lusala mu lusekkati ebitundu bibiri ebyenkanankana(radius)