Jump to content

File:Transformation (before).png

Page contents not supported in other languages.
Bisangiddwa ku Wikipedia

Laga ekifaananyi ekijjuvu (pikseli 842 ku 716 , bunene bwa fayiro: KB 29, kika kya MIME: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

This image is part of a collection of 2 plots of mathemical function (other: image:Transformation_(after).png). They show a strongly non-linear w:transformation (mathematics) being applied to a simple function (a plane through the origin). The plane is transformed into a a curved surface.

legend:

blue dot
reference point
red dots
reference square
green dots
the reference square transformed by a w:linear approximation of the non-liear transformation.

created with Maple 10 using the following code:

> restart:with(VectorCalculus):with(plots):with(plottools):z:=(x,y)->sin(1/2*x^2-1/4*y^2+3)*cos(2*x+1-exp(y)):
> z:=(x,y)->x+y/2:
> t1:=(u,v,w)->(exp(u+v),exp(u-v),cos(w));
> ti:=[t1(x,y,z)];
> bt:=[x,y,z(x,y)];
> bl:=t1(bt[]);
> pc:=[1/2,1/2];
> p0:=[pc[1],pc[2],z(pc[1],pc[2])];
> myunit:=0.3;
> circum:=map(p->[p[1],p[2],z(p[1],p[2])],[(pc+[myunit,i/10*myunit])$i=-10..10,(pc+[-myunit,i/10*myunit])$i=-10..10,(pc+[i/10*myunit,myunit])$i=-10..10,(pc+[i/10*myunit,-myunit])$i=-10..10]):
> i0:=evalf([t1(p0[])]);
> display(plot3d([x,y,z(x,y)],x=-1.2..1.2,y=-1.2..1.2,axes=normal),point(p0,color=blue,symbol=circle,symbolsize=10),'point(circum[i],color=red,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));
> display(plot3d([bl],x=-1.2..1.2,y=-1.2..1.2,axes=normal),point(i0,color=blue,symbol=circle,symbolsize=10),'point([t1(circum[i][])],color=red,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));
> J:=Jacobian(ti,[x,y,z]);
> lindiff:=Matrix(eval(J,{x=p0[1],y=p0[2],z=p0[3]}));
> tl:=(u,v,w)->convert(lindiff.Vector([u,v,w]),list);
> evalf(tl(0,0,0));
> evalf([t1(p0[])]);
> linapp:=map(c->evalf(i0+tl((c-p0)[])),circum):
> display(plot3d([bl],x=-1.2..1.2,y=-1.2..1.2,axes=normal),point(i0,color=blue,symbol=circle,symbolsize=10),'point([t1(circum[i][])],color=red,symbol=circle,symbolsize=2)'$'i'=1..nops(circum),'point(linapp[i],color=green,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));
> display('point(linapp[i]-[t1(circum[i][])],color=green,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Captions

Add a one-line explanation of what this file represents
This image is part of a collection of 2 plots of mathemical function

Items portrayed in this file

depicts Lungereza

Ebyafaayo ebya fayiro eno

Bw'onyiga ku nnaku n'essaawa, ojjakulaba fayiro nga bwe yali efaanana ku kiseera ekyo.

Ennaku n'obuddeKulingizaObuwanvu n'obugazi bwakyoEyakiteekawoOkulw'ogerako
oluwandika oluliwo kakano12:53, 19 Gusooka 2006Lingiza oluwandika olwakolebwa nga 12:53, 19 Gusooka 2006842 × 716 (KB 29)Joris Gillis~commonswikiThis image is part of a collection of 2 plots of mathemical function (other: image:Transformation_(after).png). They show a strongly non-linear w:transformation (mathematics) being applied to a simple function (a plane through the origin). The pl

Empapula 1 ezikuggusa ku fayiro eno ze:

Global file usage

The following other wikis use this file: