Eggereeso lya Payisoggolaasi (the Pythogorean Theorem)

Bisangiddwa ku Wikipedia
Jump to navigation Jump to search
Gtk-find-and-replace.svg
IALI NGO has been authorised by terminologist Muwanga Charles
to post this article from his Luganda Scientific works on Luganda Wikipedia for free Public Consumption.
Gtk-find-and-replace.svg

Eggereeso lya Payisoggolaasi kitundu ku "essomampuyisatu"(trigonometry). . Lino ly'Eggereeso lya Payisoggolaasi(the Pythagorean Theorem). Eggereeso lya Payisoggolaasi ligamba nti :


                Olwesimbu olwa kyebiriga + Olugalamiro olwa kyebiriga = Oluwunziko olwa kyebiriga.
                Mu Lungereza: Height squared Plus Base squared is equal to Hypotenuse sqaured


Essomampuyisatu era lirimu okutegeera emiramwa egyetaagisa okutegeera "Eggereeso lya Payisoggolaasi"(Pythagoras theorem)gino:


(a) Olwesimbu(height)= Olukoloboze olwesimbu

(b)Olugalamivu(Base)=Olukoloboze olugalamivu

(c) Oluwunziko/Olwewunziko (Hypotenuse)=Olukoloboze olwewunzise

(d) Olwesimbu olwa kyebiriga(Height (a)Squared )

(e) Olugalamivu olwa kyebiriga (Base (b) squared)

(f)Oluwunziko olwa kyebiriga (Hypotenuse (c) squared)

(g) Okugereesa (to theorize)

(h) Ekigereeso (Scientific theory)

(i) Omugereeso(Mathematical theory)

(j)Eggereeso (Theorem)


Lino ly'Eggereeso lya Payisoggolaasi(the Pythagorean Theorem):

Eggereeso lya Payisoggolaasi ligamba nti :


            "Olwesimbu olwa kyebiriga + Olugalamiro olwa kyebiriga = Oluwunziko olwa kyebiriga".


Essomampuyisatu(trigonometry) era liyingirako ne mu Essomampimo ery'entoloovu(The Geometry of Circles)era gino gy'emiramwa egyetaagisa okunnyonnyoka :


(a)Olusekkati(D)=Olukoloboze olusala mu nkula ennetoloovu kimu kya kubiri(Diameter)


(b)Olunakkati(R) =Olukoloboze olusala mu nkula ennetoloovu ebitundu bina era lusala mu lusekkati ebitundu bibiri ebyenkanankana(radius)