Category:Ekibalangulo

Bisangiddwa ku Wikipedia
Jump to navigation Jump to search

Ekibalangulo (Mathematics)

Ekibalangulo kitegeeza okubala oba ekibalo.Ekibalangulo kizimbiddwa akakodyo ak’okugaziya amakulu(semantic extension).Ekibalangulo kibadde kitegeeza ekifo we bawagaliranga amafumu oba ebyokulwanyisa nga betegekera entabaalo .

Ku mulembe omutebi ekibalangulo kigambo ekyekuusiza ku “kuwagala” , si kuwagala bya kulwanyisa wabula kuwagala bwongo oba okuwagala omulengera(the mind) kubanga ekibalangulo ssomo erifuula omulengera ogw’olusoobo okukolera ku misinde era omwana akola obulungi mu kibalangulo atera okwanguyirwa amasomo amalala , naddala aga sayansi.

Okusinziira ku kakensa mu kuzimba emiramwa gya sayansi, Muwanga Charles , ekibalangulo(mathematics) gwe mulamwa mu bufunze gwoyinza okukiyita "okubala" oba "ekibalo(maths) .Amasomo g'ekibalangulo omubalanguzi g'alina okumanya mulimu:


(i)Omugereeso gwa Namba (Number Theory)


(ii) Emisimba oba Emisingi gya namba (Number bases)


(iii) Ebyempimo oba essomampimo oba Essomankula(Geometry)


(iv)Omugereko(Set), emigereko(sets) , Omuteeko(union of sets) ,entabiro y’emigereko (intersection)


(v)Omukutule(Fraction) , Omutonnyeze(decimal number) ,


(vi) Okunambulula oba okulambulula namba (Factoring numbers) .Emiramwa emirala egyekuusiza ku guno mulimu :

  (a) Nambuluzo(Factor),
  (b) Nambuluzo   Eyawamu(Common Factor ) 
  (c)Nambuluzo Eyawamu Esingayo oba NESI (Highest Common Factor), 
  (d) Enkubise (Multiple), 
  (e) Enkubise Eyawamu (Common Multiple) ,
  (f) Enkubise Eyawamu Esembayo oba ENKEESE (Lowest Common Multiple),
  (g) Namba ennambulukufu(composite number), 
  (h) nNamba etali nambulukufu(prime number).


(vii)Ekifunza(Exponentiation.Emiramwa emirala egyekuusiza ku guno mulimu :

  (a)Omufunza             (exponent)
  (b)akafunza             (power)
  (c)enfunza oba ekikolo  (base)

(viii)Kyekubisamufunza .Mu bufunze "Kyekubisa"(Logarithm)

(ix) Omugerageranyo(Ratio), Ekigerageranyo(Rate) ,

(x) Ekigobansonga oba ekikyukano(Variation math, dialectical math).Emiramwa emirala egyekuusiza ku guno girimu:

 (a) Omugendagano(proportion), 
 (b)Okugendana (being proportional) ,
 (c) okugendana obutereevu(being directly proportional),
 (d) kifuulannenge(inverse), 
 (e) kasulike oba ensulike(reciprocal ),
 (f) okugendana kifuulannenge(being inversely proportional),
 (g)okukyukana(variation),
 (h) okukyukana obutereevu(direct variation),
  (i)Okukyukana kifuulannenge(inverse variation), 
  (j) entakyuka (constant)


(xi)Omukwanaganyo(mathematical relation).Emiramwa emirala egyekuusiza ku guno mulimu:

    (a)Omukwataganyo  (mathematical function),

    (b)ekikwanaganya  (mapping diagram) ,
    (c)omuyingizo     (input), 
    (d)omufulumyo     (output), 
    (e)ekikwataganya  (coordinate graph)


(xii) Obuufu oba obuyitiro(mathematical locus) ,obwolekero(direction),endagabwolekero(compass or compass rose)

(xiii) Kalonda(data) .Emiramwa emirala egyekuusiza ku guno girimu:


  (a)kalondomusengeke(Statistics),
  (b)Omusengesi wa kalonda(statistician),
  (c)okukunganya kalonda(data collection), 
  (d)okutaputa kalonda(data interpretation),

  (e)okwekebejja kalonda (data analysis),
  (f)okusengeka kalonda(data arrangement)
  (g)Okwekebnnenya kalonda (data analysis)


(xiv) Ekibalangulo oba ekibalo ekyobusuubuzi(business mathematics). Emiramwa emirala egyekuusiza ku guno girimu :


   (a) omuganyulo oba omuganyulwo(interest), 
   (b)Omuganyulo gwa banka(bank interest), 
   (c)okubalanguza oba okubalangula omuganyulo(calculating interest),
   (d) omuganyulo ogusookerwako(basic or simple interest) ,
   (e)ekintu ekizibuwavu( compound or complex),
   (f)Omuganyulo omuzibuwavu(compound interest ),
   (g) ekigerageranyo kyomuganyulo(interest rate)

(xv)Ennyingo(term, nomial).Emiramwa emirala egyekuusiza ku guno girimu :

  (a) Ekibalo ky ennyingo oba Ekiyingo (,Mathematics of terms , Polynomials),                   
  (b) Nnyingemu (monomial),
  (c)Nnyingobbiri(binomial), 
  (d)Nnyingosatu(trinomial)

(xvi)Ekisengeko oba ekibalo ky’emisengeko(Matrix) , Ebisengeko(matrices)

Ebika bya namba(types of numbers)

(a) Namba ezibala (counting numbers)

(b) Namba eza kibazo(Cardinal numbers)

(c) Namba ez obutonde(Natural numbers)

(d)Namba enzijuvu(Whole numbers)

(e) Kibalirampuyibbiri(integers) , namba eza kiddannyuma(negative numbers) , namba eza kiddamaaso(positive numbers),

(f) namba eza kyegabanya(even numbers) ,Namba eza kigaaniremu oba namba eza kigaanira(odd numbers)

(g) namba ez omugerageranyo(rational numbers) , namba ezitali za mugeragerayo(irrational numbers)

(h)namba zennyini(real numbers)

(j)namba ez omuteeberezo(imaginary numbers)

(k) Namba enzibuwavu(complex numbers)

(l) Namba eza kyebiriga(square numbers), namba eza kyesatuza(cube numbers)

(m) Namba eza ndagakifo(ordinal numbers) , namba eza ndagalinnya(nominal numbers)

Enkula ez ekibalangulo(Mathematical shapes)

(i) Akatonnyeze(point)

(ii) Olukoloboze oba omusittale(line),Omugendo(ray),ekigendo(Vector)

(iii) Ekisittale oba ekikoloboze (line segment)

(iv) Kyesimba(rectangle), kyebiriga(Sqaure) ,Kyesatuza(cube)

(v) Enkula ennetoloovu oba entoloovu(circle)

(vi) Enkula ennekulungirivu oba enkulungo(sphere,planet),ekikulungo(hemisphere)

(vii)Eripuso(ellipse), woovu(oval shape), ekiripuso(semi elliptic)

(viii) Enkula ey ekinu oba "enkunu" oba "enkinu"(cylinder)

(ix) Enkula ey’olusoggo oba "ensoggo"(Cone)

(x) Ekigulumiro(prism).Eno eba nkula ngulumivu

(xi) Ekitendero(plane figure).Eno eba nkula eri ku mutendera gumu ekitegeeza ya museetwe

(xii) Obwebulungirivu(perimeter), obwetoloovu(circumference)

(xiii) Eppeto(angle) , empeto oba amaweto (angles), eppeto eryesimbu(right angle)

(xiv) Mpuyisatu(tigony), Mpetosatu(triangle), Mpetosatu ennesimbu(right triangle)

(xv) Ebyempuyisatu oba Essomampuyisatu(trigonometry)

Amatabi

Ettuluba lino lirimu amatabi 3 gano, ku 3 awamu.

A

E

O

Empapula eziri mu ttuluba lya "Ekibalangulo"

Empapula 55 zino ze ziri mu ttuluba lino. Lirimu empapula 55 awamu.